Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-955495.v1

ABSTRACT

With high levels of the Delta variant of COVID-19 circulating in England during September 2021, schools are set to reopen with few school-based non-pharmaceutical interventions (NPIs). In this paper, we present simulation results obtained from the individual-based model, JUNE, for English school opening after a prior vaccination campaign using an optimistic set of assumptions about vaccine efficacy and the likelihood of prior-reinfection. We take a scenario-based approach to modelling potential interventions to assess relative changes rather than real-world forecasts. Specifically, we assess the effects of vaccinating those aged 16-17, those aged 12-17, and not vaccinating children at all relative to only vaccinating the adult population, addressing what might have happened had the UK began teenage vaccinations earlier. Vaccinating children in the 12-15 age group would have had a significant impact on the course of the epidemic, saving thousands of lives overall in these simulations. In the absence of such a vaccination campaign our simulations show there could still be a significant positive impact on the epidemic (fewer cases, fewer deaths) by continuing NPI strategies in schools. Our analysis suggests that the best results in terms of lives saved are likely derived from a combination of the now planned vaccination campaign and NPIs in schools.


Subject(s)
COVID-19
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.09.07.21263223

ABSTRACT

With high levels of the Delta variant of COVID-19 circulating in England during September 2021, schools are set to reopen with few school-based non-pharmaceutical interventions (NPIs). In this paper, we present simulation results obtained from the individual-based model, JO_SCPLOWUNEC_SCPLOW, for English school opening after a prior vaccination campaign using an optimistic set of assumptions about vaccine efficacy and the likelihood of prior-reinfection. We take a scenario-based approach to modelling potential interventions to assess relative changes rather than real-world forecasts. Specifically, we assess the effects of vaccinating those aged 16-17, those aged 12-17, and not vaccinating children at all relative to only vaccinating the adult population, addressing what might have happened had the UK began teenage vaccinations earlier. Vaccinating children in the 12-15 age group would have had a significant impact on the course of the epidemic, saving thousands of lives overall in these simulations. In the absence of such a vaccination campaign our simulations show there could still be a significant positive impact on the epidemic (fewer cases, fewer deaths) by continuing NPI strategies in schools. Our analysis suggests that the best results in terms of lives saved are likely derived from a combination of the now planned vaccination campaign and NPIs in schools.


Subject(s)
COVID-19 , Death
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.15.20248246

ABSTRACT

We introduce JUNE, an open-source framework for the detailed simulation of epidemics on the basis of social interactions in a virtual population constructed from geographically granular census data, reflecting age, sex, ethnicity, and socio-economic indicators. Interactions between individuals are modelled in groups of various sizes and properties, such as households, schools and workplaces, and other social activities using social mixing matrices. JUNE provides a suite of flexible parameterisations that describe infectious diseases, how they are transmitted and affect contaminated individuals. In this paper we apply JUNE to the specific case of modelling the spread of COVID-19 in England. We discuss the quality of initial model outputs which reproduce reported hospital admission and mortality statistics at national and regional levels as well as by age strata.


Subject(s)
COVID-19 , Communicable Diseases
SELECTION OF CITATIONS
SEARCH DETAIL